PMT

Mark Scheme 4725 June 2006 4725

Mark Scheme

June 2006

1.		B1		Two elements correct
	i) $\begin{pmatrix} 7 & 4 \\ 0 & -1 \end{pmatrix}$	B1	2	All four elements correct
	(ii) $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$	B1		$\mathbf{A} - \mathbf{B}$ correctly found
	<i>k</i> = 3	B1	2 4	Find <i>k</i>
2	(i)	M1		For 2 other correct vertices
		A1	2	For completely correct diagram
	(ii) $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$	B1 B1	2 4	Each column correct
3.	(i) 2 + 3i	B1	1	Conjugate seen
	(i) $2 + 51$ (ii) p = -4 q = 13	M1 A1 M1 A1	4	Attempt to sum roots or consider <i>x</i> terms in expansion or substitute 2 – 3i into equation and equate imaginary parts Correct answer Attempt at product of roots or consider last term in expansion or consider real parts Correct answer

PMT

4725

Mark Scheme

June 2006

4.	$\Sigma r^3 + \Sigma r^2$	M1		Consider the sum as two separate parts
	$\Sigma r^{2} = \frac{1}{6}n(n+1)(2n+1)$	A1		Correct formula stated
	$\Sigma r^3 = \frac{1}{4}n^2(n+1)^2$	A1		Correct formula stated
	$\frac{1}{12}n(n+1)(n+2)(3n+1)$	M1		Attempt to factorise and simplify or expand both expressions
	12	A1	5	Obtain given answer correctly or complete verification
			5	
5.	(i) -7i	B1 B1	2	Real part correct Imaginary part correct
	(ii) 2 + 3i -5 + 12i	B1 B1 B1	3	iz stated or implied or $i^2 = -1$ seen Real part correct Imaginary part correct
	5 121		5	iniughtury purt correct
	(iii) $\frac{1}{5}(4-7i)$ or equivalent	M1 A1 A1	3 8	Multiply by conjugate Real part correct Imaginary part correct N.B. Working must be shown
6	 (i) Circle, Centre O radius 2 One straight line Through O with +ve slope In 1st quadrant only 	B1 B1 B1 B1 B1 B1	5	Sketch showing correct features
	(ii) $1 + i\sqrt{3}$	M1		Attempt to find intersections by trig, solving equations or from graph
		A1	2 7	Correct answer stated as complex number

PMT

4725

7.	(i)	M1		Attempt at matrix multiplication
	$\mathbf{A}^2 = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{A}^3 = \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix}$	A1 A1	3	Correct \mathbf{A}^2 Correct \mathbf{A}^3
	(ii) $\mathbf{A}^{n} = \begin{pmatrix} 2^{n} & 0 \\ 0 & 1 \end{pmatrix}$ (iii)	B1 B1 M1 A1 A1	1 4 8	Sensible conjecture made State that conjecture is true for $n = 1$ or 2 Attempt to multiply \mathbf{A}^n and \mathbf{A} or vice versa Obtain correct matrix Statement of induction conclusion
8.	(i)	M1		Correct expansion process shown
	$a\begin{bmatrix} a \ 0 \\ 2 \ 1 \end{bmatrix} - 4\begin{bmatrix} 1 \ 0 \\ 1 \ 1 \end{bmatrix} + 2\begin{bmatrix} 1 \ a \\ 1 \ 2 \end{bmatrix}$	A1		Obtain correct unsimplified expression
	a^2-2a	A1	3	Obtain correct answer
	(ii)	M1		Solve their det $\mathbf{M} = 0$
	a = 0 or $a = 2$	A1A1ft	3	Obtain correct answers
	(iii) (a)	B1 B1		Solution, as inverse matrix exists or M non- singular or det $\mathbf{M} \neq 0$
	(b)	B1 B1	4	Solutions, eqn. 1 is multiple of eqn 3
			10	

9.				
	(i)	M1 A1		Show that terms cancel in pairs Obtain given answer correctly
	(ii)	M1 A1		Attempt to expand and simplify Obtain given answer correctly
	(iii) $(n+1)^{3} - 1 - \frac{3}{2}n(n+1) - n$ $\frac{1}{2}n(n+1)(2n+1)$	B1 B1 M1 M1 A1 A1	2	Correct Σr stated $\Sigma \ 1 = n$ Consider sum of three separate terms on RHS Required sum is LHS – two terms Correct unsimplified expression Obtain given answer correctly
	2		2	
			6	
			10	

```
4725
```

Mark Scheme

10	(i) $\alpha + \beta + \gamma = 2$ $\alpha\beta\gamma = -4$	B1 B1		Write down correct values
	$\alpha\beta + \beta\gamma + \gamma\alpha = 3$	B 1	3	
	(ii)	M1		Sum new roots
	$\alpha + 1 + \beta + 1 + \gamma + 1 = 5$	A1ft		Obtain numeric value using their (i)
	<i>p</i> = -5	A1ft	3	<i>p</i> is negative of their answer
	(iii)	M1*		Expand three brackets
		A1		$\alpha\beta\gamma + \alpha\beta + \beta\gamma + \gamma\alpha + \alpha + \beta + \gamma + 1$
		DM1		Use their (i) results
		A1ft		Obtain 2
	<i>q</i> = -2	A1ft	5	q is negative of their answer
		M2 A1 M1 A2 A1 A1	11	Alternative for (ii) & (iii) Substitute $x = u - 1$ in given equation Obtain correct unsimplified equation for u Expand Obtain $u^3 - 5u^2 + 10u - 2 = 0$ State correct values of p and q .